West Bengal State University B.A./B.Sc./B.Com (Honours, Major, General) Examinations, 2015 PART - I

MATHEMATICS — HONOURS Paper - II

Duration: 4 Hours] [Full Marks: 100

The figures in the margin indicate full marks.

GROUP - A

(Marks : 25)

Answer any five questions.

 \times 5 = 25

SUB-B.A/B.Sc.(HN)-MTMA-2043

[Turn over

4.	a)	State Cauchy's second limit theorem on sequence. Is the converse of the
		Cauchy's second limit theorem true ? Justify your answer. 1 + 1
-	b)	Using Cauchy's first limit theorem prove that $\left\{ \frac{1+\sqrt[3]{2}+\sqrt[3]{3}+\ldots+\sqrt[n]{n}}{n} \right\}$
		converges to 1.
	c) .	Give an example of two non-convergent sequences $\{x_n\}$ and $\{y_n\}$ such
		that $\{x_n + y_n\}$ is convergent.
5.	a)	Prove that every infinite subset of a denumerable set is denumerable. 3
	b)	Give examples one each of a denumerable set and a non-denumerable set. 2
6.	State	and prove Bolzano-Weierstrass theorem on accumulation points.
7.	a)	Let $f: S \to \mathbb{R}$, $S \in \mathbb{R}$ be a function, c be a limit point of S. Let $\lim_{x \to c} f(x) = l$.
		Prove that for every sequence $\{x_n\}$ in $S - \{c\}$ converging to c, the sequence
		$\{f(x_n)\}\$ converges to l .
	b)	Prove that $\lim_{x \to 0^+} \sqrt{x} \sin \frac{1}{x} = 0$.
	c)	Evaluate $\lim_{x \to 3} [x] - [\frac{x}{3}]$, where $[x]$ is the greatest integer not
		exceeding x.
8.	a)	Let $f: S \to \mathbb{R}$, $S \in \mathbb{R}$ be continuous on S , $c \in S$ and $f(c) < 0$. Then prove that there exists a neighbourhood of c , $N_{\delta}(c)$, $\delta > 0$, such that
		$f(x) \cdot f(c) > 0$, $\forall x \in N_{\delta}(c)$.
	b)	Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function and U be an open set in \mathbb{R} . Prove
	F	that $f^{-1}(U)$ is also an open set in \mathbb{R} .
	c)	Give an example of a function $f:[0,1] \to \mathbb{R}$ such that f is not continuous
		but $ f $ is continuous.

SUB-B.A/B.Sc.(HN)-MTMA-2043

9. a) Prove that the function $f: \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} 2x & \text{when } x \in Q \\ 1-x & \text{when } x \in \mathbb{R} - Q \end{cases}$$

is continuous at $x = \frac{\gamma}{3}$ and discontinuous at all other points.

- b) Give an example of a function $f:[0,1] \to \mathbb{R}$ such that f is continuous but not monotone on [0,1].
- c) Give an example of discontinuity of second kind.

GROUP - B

(Marks : 20)

10. Answer any two of the following questions:

 $2 \times 4 = 8$

- a) If $I_{m,n} = \int_{0}^{1} x^{m} (1-x)^{n} dx (m, n \in \mathbb{N})$, prove that $(m+n+1) I_{m,n} = n I_{m,n-1} \text{ and hence find the value of } I_{m,n}.$
- b) Prove that $I_{m, n} = \int \sin^{m} x \cos^{n} x dx = \frac{\sin^{m+1} x \cos^{n-1} x}{m+n} + \frac{n-1}{m+n} I_{m, n-2}.$
- c) Show that $2^{2m-1} \Gamma(m) \Gamma(m+\frac{1}{2}) = \sqrt{\pi} \Gamma(2m) \quad m > 0$.
- 11. Answer any three of the following questions:

 $3 \times 4 = 12$

- a) Find the pedal equation of the cardioid $r = a(1 + \cos \theta)$.
- b) Determine the rectilinear asymptotes, if any, of the curve $y = x + \log x$.
- If ρ_1 and ρ_2 be the radii of curvature at the ends of a focal chord of the parabola $y^2 = 4ax$, then show that $\rho_1^{-2/3} + \rho_2^{-2/3} = (2a)^{-2/3}$.
- d) Find the envelopes of the family of circles $x^2 + y^2 2ax 2by + b^2 = 0$, where a, b are parameters, whose centres lie on the parabola $y^2 = 4ax$.
- e) Find if there is any point of inflexion on the curve y-3=6 (x-2)⁵.

SUB-B.A/B.Sc.(HN)-MTMA-2043

| Turn over

GROUP - C

(Marks : 30)

Answer any three of the following questions.

12. a) Define orthogonal trajectory. Find the orthogonal trajectories of the family of curves $y^2 = 4ax$, a being parameter a > 0. 1+4

b) Solve $\frac{dy}{dx} + \frac{x}{1-x^2}y = x\sqrt{y}$.

c) Find an integrating factor of the differential equation $(2xy^4e^y + 2xy^3 + y) dx + (x^2y^4e^y - x^2y^2 - 3x) dy = 0.$

13. a) Transform the given equation to Clairaut's equation by putting $x^2 = u$ and $y^2 = v$ and hence find the general and singular solutions:

(px-y)(x-py) = 2p, where $p = \frac{dy}{dx}$. 1+2+2

Solve: $\frac{dy}{dx} + \frac{y}{x} \log y = \frac{y}{x^2} (\log y)^2.$

14. a) Solve: $\frac{d^2y}{dx^2} - y = e^x \sin \frac{x}{2}$.

b) Find the orthogonal trajectories of the family of coaxial circles

 $x^2 + y^2 + 2gx + c = 0$, where g is a parameter and c is constant.

15. a) Solve: $x^4 \frac{d^3y}{dx^3} + 3x^3 \frac{d^2y}{dx^2} - 2x^2 \frac{dy}{dx} + 2xy = \log x$.

b) Solve by the method of undetermined coefficients the differential equation

 $(D^2 - 3D + 2)y = 14 \sin 2x - 18 \cos 2x.$ 5

SUB-B.A/B.Sc.(HN)-MTMA-2043

16. a) Solve
$$\sin^2 x \frac{d^2 y}{dx^2} = 2y$$
, given that cot x is one of the solutions. 5

b) Solve
$$\frac{d^2y}{dx^2} - 4x \frac{dy}{dx} + (4x^2 - 1)y = -3e^{x^2} \sin 2x$$
 by reducing it to normal

17. a) Solve, by the method of variation of parameters

$$x^2 \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + x \frac{\mathrm{d}y}{\mathrm{d}x} - y = x^2 e^x.$$
 5

b) Solve $x \frac{d^2y}{dx^2} + (x-2) \frac{dy}{dx} - 2y = x^3$, by the method of operational factors. 5

GROUP - D

(Marks : 25)

Answer any five of the following questions.

 $5 \times 5 = 25$

- 18. Show, by vector method, that the straight line joining the mid-points of two non-parallel sides of a trapezium are parallel to the parallel sides and half of their sum in length.
- 19. Prove that the necessary and sufficient condition for three distinct points with position vectors \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} to be collinear is that there exist three scalars x, y, z not all zero such that $\overrightarrow{xa} + y \overrightarrow{b} + z \overrightarrow{c} = 0$ and x + y + z = 0.
- 20. a) If $\vec{\alpha}$, $\vec{\beta}$, $\vec{\gamma}$ are three vectors such that $\vec{\alpha} + \vec{\beta} + \vec{\gamma} = \vec{0}$ and $|\vec{\alpha}| = 3$, $|\vec{\beta}| = 5$, $|\vec{\gamma}| = 7$, then find the angle between $\vec{\alpha}$ and $\vec{\beta}$.
 - b) Find the unit vector which is perpendicular to the vectors $(3\vec{i} 2\vec{j} \vec{k})$ and $(2\vec{i} \vec{j} 3\vec{k})$.

SUB-B.A/B.Sc.(HN)-MTMA-2043

Turn over

21.	a)	If $\vec{\alpha} \times \vec{\beta} + \vec{\beta} \times \vec{\gamma} + \vec{\gamma} \times \vec{\alpha} = \vec{0}$ then show that $\vec{\alpha}$, $\vec{\beta}$, $\vec{\gamma}$ are
		coplanar. d where the state of
	b)	Find the vector equation of the plane passing through the origin and parallel
		to the vectors $2\vec{i} + 3\vec{j} + 4\vec{k}$ and $4\vec{i} - 5\vec{j} + 4\vec{k}$.
22.	a)	A particle acted on by two constant forces $\vec{i} + \vec{j} - 3\vec{k}$ and $3\vec{i} + \vec{j} - \vec{k}$ is
	al fac	displaced from the point $\vec{i} + 2\vec{j} + 3\vec{k}$ to the point $3\vec{i} + 4\vec{j} + 2\vec{k}$. Find
		the total work done.
	b)	Find the moment of the force $4\vec{i} + 2\vec{j} + \vec{k}$ acting at a point $5\vec{i} + 2\vec{j} + 4\vec{k}$
		about the point $3\vec{i} - \vec{j} + 3\vec{k}$.
23.	Show	w that $[\overrightarrow{\beta} \times \overrightarrow{\gamma} \overrightarrow{\gamma} \times \overrightarrow{\alpha} \overrightarrow{\alpha} \times \overrightarrow{\beta}] = [\overrightarrow{\alpha} \overrightarrow{\beta} \overrightarrow{\gamma}]^2$.
24.	a)	Find a simplified from of $\overrightarrow{\nabla} \times (\overrightarrow{r} f(r))$ where $f(r)$ is differentiable and
		$r = \overrightarrow{r} .$ 2 Prove that the necessary and sufficient condition for three distinct
	b)	Show that the vector $\frac{\overrightarrow{r}}{r^3}$, where $\overrightarrow{r} = x \overrightarrow{i} + y \overrightarrow{j} + z \overrightarrow{k}$ is both irrotational
		and solenoidal.
25.	a)	Find the directional derivative of the function $f(x, y, z) = yz + zx + xy$ in
		the direction of the vector $\overrightarrow{u} = \overrightarrow{i} + 2\overrightarrow{j} + 2\overrightarrow{k}$ at the point (1, 2, 0).
	b)	Prove that $\operatorname{div}(\operatorname{grad} f) = \nabla^2 f$.
SUB	-B.A/I	3.Sc.(HN)-MTMA-2043

- 26. a) If $\overrightarrow{r} = a \overrightarrow{i} \cos t + a \overrightarrow{j} \sin t + bt \overrightarrow{k}$ then show that $[\overrightarrow{r} \ \overrightarrow{r} \ \overrightarrow{r}] = a^2b$. 3
 - b) If \overrightarrow{w} is a constant vector, \overrightarrow{r} and \overrightarrow{s} are functions of a scalar variable t and if $\frac{d\overrightarrow{r}}{dt} = \overrightarrow{w} \times \overrightarrow{r}$ and $\frac{d\overrightarrow{s}}{dt} = \overrightarrow{w} \times \overrightarrow{s}$ then show that

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\stackrel{\rightarrow}{r} \times \stackrel{\rightarrow}{s} \right) = \stackrel{\rightarrow}{w} \times \left(\stackrel{\rightarrow}{r} \times \stackrel{\rightarrow}{s} \right).$$

2

SUB-B.A/B.Sc.(HN)-MTMA-2043