ME T TATAL TOTAL 1 -00

West Bengal State University

3.A./B.Sc./B.Com (Honours, Major, General) Examinations, 2015

PART - III

MATHEMATICS — HONOURS

Paper - V

ration: 4 Hours]

[Full Marks: 100

The figures in the margin indicate full marks.

Group - A

[Marks: 70]

Answer Question No. 1 and any five from the rest.

Answer any five questions:

 $3 \times 5 = 15$

- a) Let $I_x = \left(\frac{1}{2}x, \frac{1}{2}(x+1)\right)$, for $x \in (0,1)$. Show that the family $G = \{I_x : x \in (0,1)\}$ is an open cover of (0,1) and no finite subcollection of G can cover (0,1).
- b) If $f:[a,b] \to \mathbb{R}$ be continuous on [a,b] and $f(x) \ge 0$, $\forall x \in [a,b]$ and also if $\int_{a}^{b} f(x) dx = 0$, then prove that f(x) = 0, $\forall x \in [a,b]$.
- c) Prove that $f:[0,1] \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

is a function of bounded variation on [0,1].

d) Find the radius of convergence of the power series $1 + ax + \frac{x^2}{a^2} + a^3x^3 + \frac{x^4}{a^4} + ...$; where |a| < 1, $a \ne 0$.

UB-B.A./B.SC.(HN)-MTMA-12003

[Turn over

- e) Examine the convergence of the improper integral $\int_{0}^{\pi/2} \frac{\cos x}{x^{n}} dx$.
- f) Test the uniform convergence of the sequence of functions $f_n:[0,1] \to \mathbb{R}$ defined by $f_n(x) = \frac{nx}{1 + n^3 x^2}$.
- g) Obtain Fourier series representation of f(x) = x in $[-\pi, \pi]$.
- h) Use Taylor's theorem to express the function $f(x,y) = x^2 + xy + y^2$ in powers of x-1 and y-2.
- i) Evaluate: $\iint_{R} \sqrt{|x^2 2y|} \, dx \, dy$; where R = [-2, 2; 0, 2].
- a) If T is a closed subset of a compact set S in R, then using definition of compact set, prove that T is compact.
 - b) Prove that every closed bounded subset of IR is compact.
 - c) Let $f: S \to \mathbb{R}$ be a continuous function on a compact set $S \subseteq \mathbb{R}$. Prove that f(S) is a compact subset of \mathbb{R} .
- 3. a) Prove that a sequence of functions $f_n: S \to \mathbb{R}$; $S \subseteq \mathbb{R}$, $n \in \mathbb{N}$; converges uniformly to a function $f: S \to \mathbb{R}$ if and only if $M_n \to 0$ as $n \to \infty$, where $M_n = \sup_{x \in S} \left| f_n(x) f(x) \right|, n \in \mathbb{N}.$
 - b) If a sequence of bounded functions $f_n: S \to \mathbb{R}$, $S \subseteq \mathbb{R}$, $n \in \mathbb{N}$ converges uniformly to f on S, show that f is also bounded on S.
 - c) Give an example of a sequence of functions $f_n:S\to\mathbb{R},\ S\subseteq\mathbb{R},\ n\in\mathbb{N}$ which converges pointwise to $f:S\to\mathbb{R}$ and each f_n is bounded on S but f is not bounded on S.

- State Weierstrass' M-test in connection with uniform convergence of $\sum f_n$ on S, where $f_n: S \to \mathbb{R}$, $n \in \mathbb{N}$, $S \subseteq \mathbb{R}$; and apply it to show that the series of functions $1 + \frac{e^{-2x}}{2^2 1} + \frac{e^{-4x}}{4^2 1} + \frac{e^{-6x}}{6^2 1} + \dots$ converges uniformly $\forall x \ge 0$.
- b) State Abel's test on uniform convergence of a series of functions and apply it to show that the series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}x^n}{n(1+x^n)}$ is uniformly convergent on [0, 1].
- c) Show that the two power series $\sum_{n=0}^{\infty} a_n x^n$ and $\sum_{n=0}^{\infty} (n+1)a_{n+1}x^n$ have the same radius of convergence.
- a) Let $f:[a,b] \to \mathbb{R}$ be a bounded function. Prove that f is Riemann integrable on [a,b] if and only if corresponding to any $\epsilon > 0$, there exists a partition P on [a,b] such that $U(P,f)-L(P,f)<\epsilon$; where symbols have their usual meanings.
- b) Let $f:[a,b] \to \mathbb{R}$ be bounded on [a,b] and f be continuous on [a,b] except for finite number of points in (a,b). Show that f is Riemann integrable on [a,b].
- c) Let $f:[2,5] \rightarrow \mathbb{R}$ be defined by

$$f(x) = \begin{cases} x & \text{if } x \in Q \cap [2,5] \\ 0 & \text{if } x \in (\mathbb{R} - Q) \cap [2,5] \end{cases}$$

(Q is the set of all rationals). Test Riemann integrability of f on [2, 5].

6. a) If $f:[a,b] \to \mathbb{R}$ be continuous on [a,b] and $\phi:[a,b] \to \mathbb{R}$ be integrable and maintains the same sign on [a,b], then prove that

$$\int_{a}^{b} f(x)\phi(x)dx = f(a+\theta(b-a))\int_{a}^{b} \phi(x) dx, \text{ for } \theta \in [0,1].$$

- b) Prove that $1 < \int_{0}^{\pi/2} \sqrt{\sin x} \, dx < \frac{\pi}{2}$.
- State Bonnet's form of second mean value theorem on integral calculus and use it to prove that $\left| \int_{a}^{b} \frac{\sin x}{x} dx \right| \le \frac{2}{a}$; $0 < a < b < \infty$. 1 + 3
- 7. a) Let $f:[a,b] \to \mathbb{R}$ be continuous on [a,b] and f'(x) exists and bounded on (a,b). Show that f is a function of bounded variation on [a,b].
 - b) Give an example of a continuous function which is not a function of bounded variation (with justification).
 - C) Obtain the Fourier series expansion of the function $f(x) = x \sin x$ in $[-\pi, \pi]$. Hence deduce that $\frac{\pi}{4} = \frac{1}{2} + \frac{1}{1.3} \frac{1}{3.5} + \frac{1}{5.7} \dots$ 4 + 1
- 8 a) Show that the integral $\int_{0}^{2} \frac{\sin x}{x^{p}} dx$ is convergent if and only if p < 2.
 - b) Stating the conditions for validity of differentiation under integral sign, prove that $\int_{0}^{\pi/2} \frac{\log(1 + \cos\alpha\cos x)}{\cos x} dx = \frac{1}{8}(\pi^2 4\alpha^2).$
 - c) Show that $\int_{0}^{1} \frac{dx}{(1-x^6)^{\frac{1}{6}}} = \frac{\pi}{3}$.

6. a) If $f:[a,b] \to \mathbb{R}$ be continuous on [a,b] and $\phi:[a,b] \to \mathbb{R}$ be integrable and maintains the same sign on [a,b], then prove that

$$\int_{a}^{b} f(x)\phi(x)dx = f(a+\theta(b-a))\int_{a}^{b} \phi(x) dx, \text{ for } \theta \in [0,1].$$

- b) Prove that $1 < \int_{0}^{\pi/2} \sqrt{\sin x} \, dx < \frac{\pi}{2}$.
- State Bonnet's form of second mean value theorem on integral calculus and use it to prove that $\left| \int_{a}^{b} \frac{\sin x}{x} dx \right| \le \frac{2}{a}$; $0 < a < b < \infty$. 1 + 3
- 7. a) Let $f:[a,b] \to \mathbb{R}$ be continuous on [a,b] and f'(x) exists and bounded on (a,b). Show that f is a function of bounded variation on [a,b].
 - b) Give an example of a continuous function which is not a function of bounded variation (with justification).
 - C) Obtain the Fourier series expansion of the function $f(x) = x \sin x$ in $[-\pi, \pi]$. Hence deduce that $\frac{\pi}{4} = \frac{1}{2} + \frac{1}{1.3} \frac{1}{3.5} + \frac{1}{5.7} \dots$ 4 + 1
- 8 a) Show that the integral $\int_{0}^{2} \frac{\sin x}{x^{p}} dx$ is convergent if and only if p < 2.
 - b) Stating the conditions for validity of differentiation under integral sign, prove that $\int_{0}^{\pi/2} \frac{\log(1 + \cos\alpha\cos x)}{\cos x} dx = \frac{1}{8}(\pi^2 4\alpha^2).$
 - c) Show that $\int_{0}^{1} \frac{dx}{(1-x^6)^{\frac{1}{6}}} = \frac{\pi}{3}$.

- 9. a) Use Lagrange's method to find the points on the ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$ whose distances from the line 3x + y 9 = 0 are least and greatest.
 - b) Let $f(x,y) = (1-2xy+x^2)^{-\frac{1}{2}}$. Express f(1,0)-f(0,1) by partial derivatives of f. Hence show that there exists $\theta \in (0,1)$ such that $1-\sqrt{2}=\sqrt{2}(1-3\theta)(1-2\theta+3\theta^2)^{-3/2}$.
 - c) Determine the region of uniform convergence of the series $\sum_{n=1}^{\infty} \frac{2^{n-1} x^{2n-1}}{(4n-3)^2}.$
- 10. a) If $f:[a,b] \to \mathbb{R}$ be a Lipschitz function on [a, b] then prove that f is a function of bounded variation on [a, b]. Is the converse always true? Justify your answer.
 - Show that the volume of the solid bounded by the cylinder $x^2 + y^2 = 2ax$ and the paraboloid $y^2 + z^2 = 4ax$ is $\frac{2a^3}{3}(3\pi + 8)$.
 - c) Show that $\iint_E \frac{\mathrm{d}x \,\mathrm{d}y}{\sqrt{(x+y+1)^2-4xy}} = \frac{1}{2} \log_e \left(\frac{16}{e}\right), \text{ by using the}$ transformation x = u(1+v), y = v(1+u), where E is the triangle withvertices (0,0), (2,0), (2,2).

Group - B

[Marks: 15]

Answer any one of the following.

 $1 \times 15 = 15$

11. a) A function $d: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ is defined by $d(\alpha, \beta) = |x_1 - y_1| + |x_2 - y_2|$, for $\alpha, \beta \in \mathbb{R}^2$, where $\alpha = (x_1, x_2)$, $\beta = (y_1, y_2)$. Show that d is a metric on \mathbb{R}^2 .

SUB-B.A./B.SC.(HN)-MTMA-12003

[Turn over

- b) Given that (N, d) is a metric space where $d(m,n) = \frac{|m-n|}{mn}$, for $m,n \in \mathbb{N}$. Examine whether (N, d) is a complete metric space.
- c) A is a subset of metric space (X,d). Prove that $x \in \overline{A}$ if and only if there is a sequence $\{x_n\}$ in A converging to x.
- 12. a) If (X,d) is a metric space then prove that (X,d_1) is also a metric space, where $d_1(x,y) = \frac{d(x,y)}{1+d(x,y)}$, for $x,y \in X$.
 - b) In a metric space (X,d), prove that the intersection of a finite number of open sets is open. Does the result hold for any infinite number of open sets? Justify your answer. 3+2
 - c) Let (X,d) be a complete metric space and $\{F_n\}$ be any sequence of non-empty closed sets such that $F_1\supseteq F_2\supseteq ...$ in this space with $\lim_{n\to\infty}\delta(F_n)=0$, where $\delta(A)$ denotes the diameter of the set A. Prove that $F=\bigcap^\infty F_n$ contains exactly one point in X.

Group - C

[Marks: 15]

Answer any one of the following.

 $1 \times 15 = 15$

13. a) The function f(z) = u(x,y) + iv(x,y) is defined on some neighbourhood of the point $z_0 = x_0 + iy_0$. Prove that f(z) is continuous at z_0 if and only if both u(x,y) and v(x,y) are continuous at (x_0,y_0) .

- b) Given that (N, d) is a metric space where $d(m,n) = \frac{|m-n|}{mn}$, for $m,n \in \mathbb{N}$. Examine whether (N, d) is a complete metric space.
- c) A is a subset of metric space (X,d). Prove that $x \in \overline{A}$ if and only if there is a sequence $\{x_n\}$ in A converging to x.
- 12. a) If (X,d) is a metric space then prove that (X,d_1) is also a metric space, where $d_1(x,y) = \frac{d(x,y)}{1+d(x,y)}$, for $x,y \in X$.
 - b) In a metric space (X,d), prove that the intersection of a finite number of open sets is open. Does the result hold for any infinite number of open sets? Justify your answer.
 - c) Let (X,d) be a complete metric space and $\{F_n\}$ be any sequence of non-empty closed sets such that $F_1\supseteq F_2\supseteq ...$ in this space with $\lim_{n\to\infty}\delta(F_n)=0$, where $\delta(A)$ denotes the diameter of the set A.
 - Prove that $F = \bigcap_{n=1}^{\infty} F_n$ contains exactly one point in X.

Group - C

[Marks: 15]

Answer any one of the following.

 $1 \times 15 = 15$

13. a) The function f(z) = u(x,y) + iv(x,y) is defined on some neighbourhood of the point $z_0 = x_0 + iy_0$. Prove that f(z) is continuous at z_0 if and only if both u(x,y) and v(x,y) are continuous at (x_0,y_0) .

b) Let $f: \, c \to c$ be defined by $f(z) = \frac{(\overline{z})^2}{z}$, $z \neq 0$

= 0, z = 0

Show that f satisfies Cauchy-Riemann equations at z = 0 but the derivative of f fails to exist there.

- c) If f(z) is differentiable in a region G and |f(z)| is constant in G, then prove that f(z) is constant in G.
- 14. a) Let f(z) = u(x,y) + iv(x,y) be defined in some neighbourhood $N(z_0)$ of z_0 and u, v are both differentiable at (x_0,y_0) , where $z_0 = (x_0,y_0)$ and u, v satisfy Cauchy-Riemann equations at (x_0,y_0) . Prove that f is differentiable at z_0 .
 - Show that the function $f(z) = |z|^2$ is differentiable at z = 0 but it is not analytic at that point.
 - c) Use Milne-Thompson method to find an analytic function whose real part is given by $u(x,y) = e^x \cos y$.