
1. What is shell in UNIX?

Ans: A Shell provides you with an interface to the Unix system. It gathers input
from you and executes programs based on that input. When a program finishes
executing, it displays that program's output.

Shell is an environment in which we can run our commands, programs, and shell
scripts. There are different flavors of a shell, just as there are different flavors of
operating systems. Each flavor of shell has its own set of recognized commands
and functions.

2. Discuss the various types of shell.

Ans: Shell Types

In Unix, there are two major types of shells −

 Bourne shell − If you are using a Bourne-type shell, the $ character is the
default prompt.

 C shell − If you are using a C-type shell, the % character is the default
prompt.

The Bourne Shell has the following subcategories −

 Bourne shell (sh)
 Korn shell (ksh)
 Bourne Again shell (bash)
 POSIX shell (sh)

The different C-type shells follow −

 C shell (csh)
 TENEX/TOPS C shell (tcsh)

The original Unix shell was written in the mid-1970s by Stephen R. Bourne while
he was at the AT&T Bell Labs in New Jersey.

Bourne shell was the first shell to appear on Unix systems, thus it is referred to as
"the shell".

Bourne shell is usually installed as /bin/sh on most versions of Unix. For this
reason, it is the shell of choice for writing scripts that can be used on different
versions of Unix.

3. Various types of UNIX editors.

1. Ans: Vi/Vim Editor. ...
2. Gedit. ...
3. Nano Editor. ...
4. GNU Emacs. ...
5. Kate/Kwrite. ...

6. Lime Text. ...
7. Pico Editor. ...
8. Jed Editor.

4. Different modes of operation in VI Editor
Ans: Modes of Operation in vi editor There are three modes of operation in vi:

 Command Mode: When vi starts up, it is in Command Mode. This mode is

where vi interprets any characters we type as commands and thus does not
display them in the window. This mode allows us to move through a file, and
to delete, copy, or paste a piece of text.
To enter into Command Mode from any other mode, it requires pressing
the [Esc] key. If we press [Esc] when we are already in Command Mode, then
vi will beep or flash the screen.

 Insert mode: This mode enables you to insert text into the file. Everything
that’s typed in this mode is interpreted as input and finally, it is put in the file.
The vi always starts in command mode. To enter text, you must be in insert
mode. To come in insert mode you simply type i. To get out of insert mode,
press the Esc key, which will put you back into command mode.

 Last Line Mode(Escape Mode): Line Mode is invoked by typing a colon [:],
while vi is in Command Mode. The cursor will jump to the last line of the
screen and vi will wait for a command. This mode enables you to perform
tasks such as saving files, executing commands.

5. What is shell script?
Ans: The basic concept of a shell script is a list of commands, which are listed in
the order of execution. A good shell script will have comments, preceded
by # sign, describing the steps.

There are conditional tests, such as value A is greater than value B, loops allowing
us to go through massive amounts of data, files to read and store data, and
variables to read and store data, and the script may include functions.

We are going to write many scripts in the next sections. It would be a simple text
file in which we would put all our commands and several other required
constructs that tell the shell environment what to do and when to do it.

Shell scripts and functions are both interpreted. This means they are not compiled.

6. Example of Shell script.

Ans: Assume we create a test.sh script. Note all the scripts would have
the .sh extension. Before you add anything else to your script, you need to alert the
system that a shell script is being started. This is done using the shebang construct.
For example −

#!/bin/sh
This tells the system that the commands that follow are to be executed by the
Bourne shell. It's called a shebang because the # symbol is called a hash, and the
! symbol is called a bang.

To create a script containing these commands, you put the shebang line first and
then add the commands −

#!/bin/bash
pwd
ls

7. Writing and executing shell script.

Ans:

Shell scripts have several required constructs that tell the shell environment what
to do and when to do it. Of course, most scripts are more complex than the above
one.

The shell is, after all, a real programming language, complete with variables,
control structures, and so forth. No matter how complicated a script gets, it is still
just a list of commands executed sequentially.

The following script uses the read command which takes the input from the
keyboard and assigns it as the value of the variable PERSON and finally prints it
on STDOUT.

#!/bin/sh

Author : Zara Ali
Copyright (c) Tutorialspoint.com
Script follows here:

echo "What is your name?"
read PERSON
echo "Hello, $PERSON"

Here is a sample run of the script −

$./test.sh
What is your name?
Zara Ali
Hello, Zara Ali

The above command unsets the value of a defined variable. Here is a simple
example that demonstrates how the command works −

#!/bin/sh

NAME="Zara Ali"
unset NAME
echo $NAME

8. Types of shell variable.

Ans: When a shell is running, three main types of variables are present −

 Local Variables − A local variable is a variable that is present within the
current instance of the shell. It is not available to programs that are started
by the shell. They are set at the command prompt.

 Environment Variables − An environment variable is available to any
child process of the shell. Some programs need environment variables in
order to function correctly. Usually, a shell script defines only those
environment variables that are needed by the programs that it runs.

 Shell Variables − A shell variable is a special variable that is set by the
shell and is required by the shell in order to function correctly. Some of
these variables are environment variables whereas others are local variables

9. What is system call in UNIX?

Ans: In computing, a system call is the programmatic way in which a computer
program requests a service from the kernel of the operating system it is executed
on. A system call is a way for programs to interact with the operating system.

Services Provided by System Calls :

1. Process creation and management
2. Main memory management
3. File Access, Directory and File system management
4. Device handling(I/O)
5. Protection
6. Networking, etc.

Types of System Calls : There are 5 different categories of system calls –

1. Process control: end, abort, create, terminate, allocate and free memory.
2. File management: create, open, close, delete, read file etc.
3. Device management
4. Information maintenance
1.5. Communication

Examples of Windows and Unix System Calls –

WINDOWS UNIX

Process Control

CreateProcess()

ExitProcess()

WaitForSingleObject()

fork()

exit()

wait()

File
Manipulation

CreateFile()

ReadFile()

WriteFile()

CloseHandle()

open()

read()

write()

close()

Device

Manipulation

SetConsoleMode()

ReadConsole()

WriteConsole()

ioctl()

read()

write()

Information

Maintenance

GetCurrentProcessI()

SetTimer()

Sleep()

getpid()

alarm()

sleep()

Communication

CreatePipe()

CreateFileMapping()

MapViewOfFile()

pipe()

shmget()

mmap()

Protection

SetFileSecurity()

InitlializeSecurityDescriptor()

SetSecurityDescriptorGroup()

chmod()

umask()

chown()

10. Decision making shell script.
In this chapter, we will understand shell decision-making in Unix. While writing a shell
script, there may be a situation when you need to adopt one path out of the given two
paths. So you need to make use of conditional statements that allow your program to
make correct decisions and perform the right actions.

Unix Shell supports conditional statements which are used to perform different actions
based on different conditions. We will now understand two decision-making statements
here −

 The if...else statement

 The case...esac statement

The if...else statements

If else statements are useful decision-making statements which can be used to select
an option from a given set of options.

Unix Shell supports following forms of if…else statement −

 if...fi statement
 if...else...fi statement
 if...elif...else...fi statement

Most of the if statements check relations using relational operators discussed in the
previous chapter.

The case...esac Statement

You can use multiple if...elif statements to perform a multiway branch. However, this is
not always the best solution, especially when all of the branches depend on the value
of a single variable.

Unix Shell supports case...esac statement which handles exactly this situation, and it
does so more efficiently than repeated if...elif statements.

There is only one form of case...esac statement which has been described in detail
here −

 case...esac statement

The case...esac statement in the Unix shell is very similar to
the switch...case statement we have in other programming languages
like C or C++ and PERL, etc.

In this chapter, we will discuss shell loops in Unix. A loop is a powerful programming
tool that enables you to execute a set of commands repeatedly. In this chapter, we will
examine the following types of loops available to shell programmers −

 The while loop
 The for loop
 The until loop
 The select loop

You will use different loops based on the situation. For example, the while loop
executes the given commands until the given condition remains true; the until loop
executes until a given condition becomes true.

Once you have good programming practice you will gain the expertise and thereby,
start using appropriate loop based on the situation. Here, while and for loops are
available in most of the other programming languages like C, C++ and PERL, etc.

Nesting Loops

All the loops support nesting concept which means you can put one loop inside another
similar one or different loops. This nesting can go up to unlimited number of times
based on your requirement.

Here is an example of nesting while loop. The other loops can be nested based on the
programming requirement in a similar way −

Nesting while Loops

It is possible to use a while loop as part of the body of another while loop.

Syntax
while command1 ; # this is loop1, the outer loop
do
 Statement(s) to be executed if command1 is true

 while command2 ; # this is loop2, the inner loop
 do
 Statement(s) to be executed if command2 is true
 done

 Statement(s) to be executed if command1 is true
done

Example

Here is a simple example of loop nesting. Let's add another countdown loop inside the
loop that you used to count to nine −

#!/bin/sh

a=0
while ["$a" -lt 10] # this is loop1
do
 b="$a"
 while ["$b" -ge 0] # this is loop2
 do
 echo -n "$b "
 b=`expr $b - 1`
 done
 echo
 a=`expr $a + 1`
done

This will produce the following result. It is important to note how echo -n works here.
Here -n option lets echo avoid printing a new line character.

0
1 0
2 1 0
3 2 1 0
4 3 2 1 0
5 4 3 2 1 0

6 5 4 3 2 1 0
7 6 5 4 3 2 1 0
8 7 6 5 4 3 2 1 0
9 8 7 6 5 4 3 2 1 0

